Математический редактор MathCAD

         

Число обусловленности квадратной матрицы



9.2.6. Число обусловленности квадратной матрицы

Еще одной важной характеристикой матрицы является ее число обусловленности (condition питэег). Число обусловленности является мерой чувствительности систелы линейных уравнений Ах=b, определяемой матрицей А, к погрешностям задания вектора b правых частей уравнений. Чем больше число обусловленности, тем сильнее это воздействие и тем более неустойчив процесс нахождения решения. Число обусловленности связано с нормой матрицы и вычисляется по-разному для каждой из норм;

  • cond1(A) — число обусловленности в норме L1;
  • cond2 (A) — число обусловленности в норме L2;
  • conde(A) — число обусловленности в евклидовой норме;
  • condi (A) — число обусловленности в норме;
    • А — квадратная магрица.

Расчет чисел обусловленности для двух матриц А и В показан в листинге 9.31. Обратите взимание, что первая из матриц является хорошо обусловленной, а вторая - плохо обусловленной (две ее строки определяют очень близкие системы уравнений, с точностью до множителя з). Вторая строка листинга дает формальное определение числа обусловленности как произведения норм исходной и обратной матриц. В других нормах определение точно такое же.

Как нетрудно понять, матрицы А и в из предыдущего листинга 9.30 обладают одинаковыми числами обусловленности, т, к. В=100А, и, следовательно, обе матрицы определяют одну и ту же систему уравнений.



Содержание раздела