Математический редактор MathCAD




12.1.4. Решение краевых задач с дополнительным условием в промежуточной точке



12.1.4. Решение краевых задач с дополнительным условием в промежуточной точке

Иногда дифференциальные уравнения определяются с граничными условиями не только на концах интервала, но и с дополнительным условием в некоторой промежуточной точке расчетного интервала. Чаше всего такие задачи содержат данные о негладких в некоторой внутренней точке интервала решениях. Для них имеется встроенная функция bvaif.it, также реализующая алгоритм стрельбы.

  • bvalfit(z1,z2,x0,x1,xf,D,load1,load2,score) — поиск вектора недостающих граничных условий для краевой задачи с дополнительным условием в промежуточной точке для системы N ОДУ;
    • z1 — вектор, присваивающий недостающим начальным условиям на левой границе интервала начальные значения;
    • z2 — вектор того же размера, присваивающий недостающим начальным условиям на правой границе интервала начальные значения;
    • х0 — левая граница расчетного интервала;
    • x1 — правая граница расчетного интервала;
    • xf — точка внутри интервала;
    • D(х,у) — векторная функция, описывающая систему N ОДУ, размера NXI и двух аргументов — скалярного х и векторного у. При этом у — это неизвестная векторная функция аргумента х того же размера NXI;
    • loadi(x0,z) — векторная функция размера NXI левых граничных условий, причем недостающие начальные условия поименовываются соответствующими компонентами векторного аргумента z;
    • load2 (x1,z) — векторная функция размера NXI правых граничных условий, причем недостающие начальные условия поименовываются соответствующими компонентами векторного аргумента z;
    • score (xf, у) — векторная функция размера NXI, выражающая внутреннее условие для векторной функции у в точке xf.

Обычно функция bvalf it применяется для задач, в которых производная решения имеет разрыв во внутренней точке xf. Некоторые из таких задач не удается решить обычным методом пристрелки, поэтому приходится вести пристрелку сразу из обеих граничных точек. В этом случае дополнительное внутреннее условие в точке xf является просто условием сшивки в ней левого и Правого решений. Поэтому для данной постановки задачи оно записывается в форме score(xf,y):=y.

Рассмотрим действие функции bvaifit на знакомом примере модели взаимодействия пучков света (см. рис. 12.1), предположив, что в промежутке между xf=0.5 и x1=1.0 находится другая, оптически более плотная среда с другим коэффициентом ослабления излучения а(х)=3. Соответствующая краевая задача решена в листинге 12.3, причем разрывный показатель ослабления определяется в его второй строке.









Начало  Назад  Вперед



Книжный магазин