Функции Эйри
Функции Эйри представляют собой независимые решения линейного дифференциального уравнения w"- zw = 0. В Mathematica эти функции представлены следующим набором:
- AiryAi [z] — возвращает значение функции Эйри Ai(z);
- AiryAiPrime [ z ] — возвращает значение производной функции Эйри Ai '(z);
- AiryBi [z] — возвращает значение функции Эйри Bi(z);
- AiryBiPrime [z] — возвращает производную функции Эйри Bi'(z).
Ввод (In) | Вывод (Out) |
AiryAi [2. +3.*I] | 0.00810446 + 0.131178 I |
AiryAi[l.] | 0.135292 |
AiryBi [2. +3.*I] | -0.396368 - 0.569731 I |
AiryBiPrime [2 . +3 . *I] | 0.349458 - 1.10533 I |
D[AiryAi[x],х] AiryAiPrime[x] Integrate[AiryBi[x],x] {xGamma[1/3 ] HypergeometricPFQ[{1/3 }, {2/3,4/3}, x3/9]} /{3 31/6 Gamma [ 2/3 ] Gamma [ 5/3 ]} { x2Gamma[1/3 ] HypergeometricPFQ[{1/3 }, {2/3,4/3}, x3/9]} /{3 35/6 Gamma [ 4/3 ] Gamma [ 5/3 ]} Series[AiryBi[x],{x,0,5}] {1 /31/6xGamma[2/3]}+ {31/6x /Gamma[1/3]}+ {x3 /631/6Gamma[2/3]}+{x4 /435/6Gamma[1/3]}+O[x]6Графики функций, Эйри представлены на рис. 6.11. Нетрудно заметить, что при х < 0 они имеют колебательный характер.
Рис. 6.11. Графики функций Эйри (сверху) и их производных (снизу)
Бета-функция и родственные ей функции
Класс бета-функций, имеющих специальное интегральное представление, в Mathematica представлен следующим набором:- Beta [а, b] — эйлерова бета-функция В(a, b);
- Beta[z, а, b] — неполная бета-функция;
- Beta[z0, zl, a, b] — обобщенная неполная бета-функция Beta [z1, a, b] - Beta[z0, а, b];
- BetaRegularized [z, a> b] — регуляризированная неполная бета-функция I(z,a,b) = Betafz, a, b]/Beta[a, b];
- BetaRegularized [z0, zl, a, b]—регуляризированная обобщенная неполная бета-функция I(z1l,a,b) - I(z0, a, b).
Ввод (In) | Вывод (Out) |
Beta[l.,2.] | 0.5 |
Beta[l.,2.,3.] | 0.0833333 |
Beta[2.+3.*I,4.+6.*I,l,2] | 4. - 12. I |
BetaRegulari zed [0.1,1,2] | 0.19 |
|